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Abstract

Optical directional coupler modulator
amplitude response may be synthesized using
the Gel'fand-Levitan-Marchenko inverse
scattering technique. The technique determines
the coupling function required to obtain the
specified response, and for this summary we
illustrate it with the response function of a
third order Butterworth function. The
technique provides the possibility of designing
coupler modulators with small switching
voltages, and better linearity.

Summary

In order to avoid spectral broadening in optical
communication systems, external modulators
are used instead of direct modulation of the
source. The modulators currently available
today have nonlinear response functions, and
the common Mach-Zehnder modulator {1] for
instance has a squared cosine response. In
order to avoid crosstalk in analog optical
systems, the modulation depth then has to be
extremely small. The optical directional coupler
modulator with constant coupling also has a
nonlinear response, and the response function
has the form [1]:
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where § = AB/2, with AB the difference in the
propagation constants of the two coupled
optical modes, and « is the coupling factor and
71 is proportional to the optical power in the
output signal. However, it is possible to
construct a directional coupler modulator with
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a response that differs dramatically from that
of a uniform directional coupler, by varying the
coupling function by means of a synthesis
technique to obtain a given response function.
In this paper we discuss how the coupling
function may be synthesized from a specified
response function using the
Gel’fand-Levitan-Marchenko technique inverse
scattering formulation. We believe that this the
first time the synthesis of the amplitude
response of optical coupler modulators has been
proposed. We briefly outline the technique
based on the coupled mode theory, with the
usual notation, for the coupler modulator. The
assumption made is that the coupling function
varies slowly, so that its spatial derivative may
be ignored, in the current analysis. A schematic
diagram of a directional coupler with uniform
coupling is given in figure 1.

The coupled mode equations of the directional
coupler in general have no analytical solutions,
since they lead to the Riccati equation [1}, and
therefore there are no general inverse technique
from which we may find the coupling function
from the response. However, if the response
function is restricted to certain classes of
polynomial functions it is possible to apply
inverse techniques. The
Gel’fand-Levitan-Marchenko (GLM) [2]
technique may be used to find a coupling
function that gives a result close to the specified
one, using various approximation functions
including of the Butterworth polynomial form,
the Chebycheff polynomials or other polynomial
approximations, of the specified response.
Another strategy for finding an inverse solution
is keep the original response function, but use
approximation methods to find the coupling
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Figure 1: A schematic diagram of a directional
coupler with uniform coupling

function, which we call the Fourier transform
method, however, space does not permit the
description of this method in this summary.
We provide a short description of the GLM
method following the notation of Song et al,
and Winick [5],[3], [4] who have previously
applied this technique to optical corrugated
coupler filters . The first step is find a rational
polynomial function r(6) that best fits the
required response function. For the coupler, in
coupled mode theory, the complex amplitudes
of the waves in the two guides are represented
by S(z,6) and R(2,6), and r is the ratio
S(L,6)/R(L,d). The order of the denominator
of r needs to be higher than the order of the
numerator, and all the poles of the function
need to be in the lower half plane and distinct.
In addition, » must have the following property:

(2)

as otherwise k will not necessarily be real, and

r*(8%) = —r(-9)

* superscript means complex conjugate. After
an appropriate r is obtained, the following
definitions are made:

u = —j6 (3)
Glu) = r(u) = 5 (4)
Fw) = Q)Q*(~w*) + PwP'(~u) (5

The next step is to find all the roots of @ = 0,
which now will be in the left half plane, and
denote them pq,pa,...... pn- In addition the roots
of F = 0 need to be found, and they can be

denoted w, wy,. .., wn, —w}, —wi,. .., —wk. N
is here the order of the polynomial Q. After all
these roots are found, the next step in the
method is to solve the following set of 2N
coupled linear equations:
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Here the index » runs from 1...N. Note that
there are in fact 4N unknowns in the equation
set, as the real and imaginary parts have to be
found separately. Once all the functions g, ; are
found, the coupling function may now be
calculated from:

eWmZz
- Pn + wp,

N
k(2) = -2j5 Z 91,0 (2) e“m#
n=1

~G (~w}) g3 (2) €7]

Note that when using equations 6-7, the
assumption is that the coupling « is zero for

z < 0. In addition, the specified response will
theoretically only appear at z = oo.
Fortunately, x usually converges towards zero
at an earlier stage. Still, depending on how
early we decide to truncate our coupler, the
coupler’s response will always differ somewhat
from the specifications.

A number of different polynomial
approximations may be used, for the present we
only provide results of a Butterworth response
of order n defined by:

(7)

bz

= l-|—-(36:)2n

Here b has a value less than one, and we set the
scaling factor §. = 1 in the following
discussions. From equation 8 we may deduce:

S(8) (8)

RO = 1 b?
IROI™ = 1= 0%
52n+(1-——b2)
14 §2n (%)
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For G(u) in equation 4 we then get:
IGu)* = G(u)G*(u) = ~G(v)G(-u)
b2
= ey (1)

The 2n poles of |G(u)] may now easily be found

[5]:
p (1- bz)ﬁ ™ neven (12)
k = 1L ik
(1-b%)2mei'm n odd
where
for neven,k =1,2,...,2n (13)

and for nodd, £k =0,1,...,2n -1 (14)
The poles in the left half plane are identified
with G(u), whereas the other poles are
identified with G(—wu). Note that b = 1 means
that all the poles are at the origin. In order to
have distinct poles, which is one of the
requirements for the GLM technique, b needs to
be less than one. In practice this is, however,
not a problem since b without any numerical
difficulty can be set much closer to one than
any physical coupler can achieve. For the third
order filter , n = 3, we thus obtain the following
relations [3]:

P(u) = jb (15)

Qu) = H[——u%—(l-bz)é—ej%] (16)
k=2

Flu) = 1-4° (17)

The roots of @ = 0 and F = 0 may now be
easily found from equations 16 and 17,
respectively, and we next solve equation set 6.
Using equation 7 the coupling coefficient x may
be calculated. In order to set the coupling and
interaction lengths in perspective, it may help
to compare the results with a uniform
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Figure 2: The spatially varying coupling func-
tion k of a third order Butterworth filter func-
tion with cutoff at § = 1 and with »% = 0.99
calculated using the GLM technique.

directional coupler modulator that is one
coupling length long. If the “switching 6” is
unity, the coupling length will to be

V37 /2 ~ 2.7, and the coupling coefficient & will
be 1/\/5 =~ 0.58. Thus the maximum value of
the coupling coeflicient is three times as large in
the Butterworth function. The coupling length
is in this case harder to calculate, since the
device ideally should be infinitely long. A
truncation at 2 = 6 does, however, give
satisfactory results, as shown in figure 3. Note
that for each zero in the spatially varying
coupling function we get a sign shift. This is a
problem we encountered in most of the coupling
function we have synthesized. A “negative”
coupling is in itself meaningless, it may be seen
that a sign shift in the coupling corresponds to
a phase shift between the two modes. There is
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Figure 3: Third order Butterworth filter func-
tion. The response 7 is reconstructed from the
spatially varying filter function shown in figure
2. The coupling function was truncated at z = 6.
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no way of avoiding these sign shifts. Neither a
truncation at the first zero, use of only the
absolute value, nor avoiding the zeros by adding
a constant to k give even close to satisfactory
results. A sign change of the coupling function
corresponds to a 180 degree phase shift, and
this is easily achieved using an extra half
wavelength of line, which is very small, in one of
the arms of the coupler. Thus, the coupler from
the truncated Butterworth coupling function
will have three regions where the coupling rises
to the appropriate maximum, and at every sign
change the coupling goes to zero, where the
extra length of line is added in one of the arms.
In summary we have shown that the response
function of a coupler modulator may be
synthesized by obtaining the coupling function.
The realization of the coupler with the specified
coupling function is then the next step.
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