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Abstract

Optical directional coupler modulator

amplitude response may be synthesized using

the Gel’fand-Levitan-Marchenko inverse

scattering technique. The technique determines

the coupling function required to obtain the

specified response, and for this summary we

illustrate it with the response function of a

third order Butterworth function. The

technique provides the possibility of designing

coupler modulators with smalI switching

volt ages, and bet ter linearity.

Summary

In order to avoid spectral broadening in optical

communication systems, external modulators

are used instead of direct modulation of the

source. The modulators currently available

today have nonlinear response functions, and

the common Mach- Zehnder modulator [1] for

instance has a squared cosine response. In

order to avoid crosstalk in analog optical

systems, the modulation depth then has to be

extremely small, The optical directional coupler

modulator with constant coupling also has a

nonlinear response, and the response function

has the form [1]:

1

q = 1 + (6//$)2
sin2(K.z [1 + (6/K) 2]l’2) (1)

where 6 = A~ / 2, with A~ the difference in the

propagation constants of the two coupled

optical modes, and K is the coupling factor and

q is proportional to the optical power in the

output signal. However, it is possible to

construct a directional coupler modulator with

Coupler

a response that differs dramatically from that

of a uniform directional coupler, by varying the

coupling function by means of a synthesis

technique to obtain a given response function.

In this paper we discuss how the coupling

function may be synthesized from a specified

response function using the

Gel’fand-Levitan-Marchenko technique inverse

scattering formulation. We believe that this the

first time the synthesis of the amplitude

response of optical coupler modulators has been

proposed. We briefly outline the technique

based on the coupled mode theory, with the

usual notation, for the coupler modulator. The

assumption made is that the coupling function

varies slowly, so that its spatial derivative may

be ignored, in the current analysis. A schematic

diagram of a directional coupler with uniform

coupling is given in figure 1.

The coupled mode equations of the directional

coupler in general have no analytical solutions,

since they lead to the Rlccati equation [1], and

therefore there are no general inverse technique

from which we may find the coupling function

from the response. However, if the response

function is restricted to certain classes of

polynomial functions it is possible to apply

inverse techniques. The

Gel’fand-Levitan-Marchenko (GLM) [2]

technique may be used to find a coupling

function that gives a result close to the specified

one, using various approximation functions

including of the Butterworth polynomial form,

the Chebycheff polynomials or other polynomial

approximations, of the specified response.

Another strategy for finding an inverse solution

is keep the original response function, but use

approximation methods to find the coupling
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Figure 1: A schematic diagram of a directional

coupler with uniform coupling

function, which we call the Fourier transform

method, however, space does not permit the

description of this method in this summary.

We provide a short description of the GLM

method following the notation of Song et al,

and Winick [5] ,[3], [4] who have previously

applied this technique to optical corrugated

coupler filters . The first step is find a rational

polynomial function T(J) that best fits the

required response function. For the coupler, in

coupled mode theory, the complex amplitudes

of the waves in the two guides are represented

by S(,z, f) and R(z,6), and ~ is the ratio

S(L, b)/R(L, 6). The order of the denominator

of T needs to be higher than the order of the

numerator, and all the poles of the function

need to be in the lower half plane and distinct.

In addition, ~ must have the following property:

7’”(6’) = –T(–6) (2)

as otherwise K will not necessarily be real, and

* superscript means complex conjugate. After

an appropriate ~ is obtained, the following

definitions are made:

u= –j6

G(u) = ~(ju) =

F(u) = Q(u)Q*

P(u)

Q(u)

–u*) + P(U)P*

(3)

(4)

–u*) (5)

The next step is to find all the roots of Q = O,

which now will be in the left half plane, and

denote them PI, Pa,...... pN. In addition the roots

of F = O need to be found, and they can be

denoted Wl, Wz,. . . . WN, –w;, –w; ,. . . . –w;. N

is here the order of the polynomial Q. After all

these roots are found, the next step in the

method is to solve the following set of 2N

coupled linear equations:

Here the index n runs from 1 . . . iV. Note that

there are in fact 4N unknowns in the equation

set, as the real and imaginary parts have to be

found separately. Once all the functions ga,j are

found, the coupling function may now be

calculated from:

N

K(Z) = –2j ~ [gl,n (z) ew”z

n=l

–G (–LLJJ)gj,n(z) e-~~z1 (7)

Note that when using equations 6-7, the

assumption is that the coupling K is zero for

z < 0, In addition, the specified response will

t heretically only appear at z = 00.

Fortunately, K usually converges towards zero

at an earlier stage. Still, depending on how

early we decide to truncate our coupler, the

coupler’s response will always differ somewhat

from the specifications,

A number of different polynomial

approximations may be used, for the present we

only provide results of a Butterworth response

of order n defined by:

1s(012 = b’‘n (8)

1 + ($)

Here b has a value less than one, and we set the

scaling factor 6= = 1 in the following

discussions. From equation 8 we may deduce:

Pt(r$)[’ = 1- ~ :;2m
(52n+ (1 – /)2)——

1 + (P
(9)
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,T,2 = ~’
(1 - b’)+ (w

(lo) 2
,5

For G(u) in equation 4 we then get:
.%’

IG(u)12 = ‘G(u) G*(u) = -G(u) G(-u) 05

b’

= (1 - bz) + (-u’)n
(11) 0

.0,0 , 2 3 4 5 e 7
z

The 2n poles of lG(u)\ may now easily be found

[5]: Figure 2: The spatially varying coupling func-

tion K of a third order Butterworth filter func-

tion with cutoff at 6 = 1 and with b2 = 0.99

{

~k = (1 - b2)~ .j+
n even calculated using the GLM technique.

(~_ ~’)ke~%
(12)

n odd

directional coupler modulator that is one
where

coupling length long. If the “switching 6“ is

forneven, k=l,2,. ..,2n
unity, the coupling length will to be

’13) fi7r/2 R 2.7, and the coupling coefficient K will
and fornodd, k=O,l, . . ..2n –1 (14) be l/fi = 0.58, Thus the maximum value of

The poles in the left half plane are identified

with G(u), whereas the other poles are

identified with G(–u). Note that b = 1 means

that all the poles are at the origin. In eider to

have distinct poles, which is one of the

requirements for the GLM technique, b needs to

be less than one. In practice this is, however,

not a problem since b without any numerical

difficulty can be set much closer to one than

any physical coupler can achieve. For the third

order filter , n = 3, we thus obtain the following

relations [3]:

the coupling coefficient is three times as large in

the Butterworth function. The coupling length

is in this case harder to calculate, since the

device ideally should be infinitely long. A

truncation at z = 6 does, however, give

satisfactory results, as shown in figure 3. Note

that for each zero in the spatially varying

coupling function we get a sign shift. This is a

problem we encountered in most of the coupling

function we have synthesized. A “negative”

coupling is in itself meaningless, it may be seen

that a sign shift in the coupling corresponds to

a phase shift between the two modes. There is

P(U) = jb

’15) rrrl

Q(u) = fi [-U+ (1 - b2)i e~%] (16)

k=2

F(u) = 1 – ‘#
/

The roots of Q = O and F = O may now be
:L4

easily found from equations 16 and 17, .,5 ., .0. 0s,15,
.&.

respectively, and we next solve equation set 6.

Using equation 7 the coupling coefficient K may Figure 3: Third order Butterworth filter func-

be calculated. In order to set the coupling and tion. The response q is reconstructed from the

interaction lengths in perspective, it may help spatially varying filter function shown in figure

to compare the results with a uniform 2. The coupling function was truncated at z = 6.
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no way of avoiding these sign shifts. Neither a Gel ‘fand-Levitan-Marchenko inverse

truncation at the first zero, use of only the scattering method, J. Opt. Sot. Amer. A,

absolute value, nor avoiding the zeros by adding V. 2, pp. 1905-1915, NOV. 1985.

a constant to K give even close to satisfactory

results. A sign change of the coupling function
[6] S. Butterworth: On the Theory of Filter

corresponds to a 180 degree phase shift, and Amplifiers. , Wireless Engineer, v. 7, pp.

this is easily achieved using an extra half 536-541, October 1930.

wavelength of line, which is very small, in one of

the arms of the coupler. Thus, the coupler from

the truncated Butterworth coupling function

will have three regions where the coupling rises

to the appropriate maximum, and at every sign

change the coupling goes to zero, where the

extra length of line is added in one of the arms.

In summary we have shown that the response

function of a coupler modulator may be

synthesized by obtaining the coupling function.

The realization of the coupler with the specified

coupling function is then the next step,
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